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ABSTRACT

Desirable properties of robotics vision database systems are given, and structures which possess
properties appropriate for some aspects of such database systems are examined. Included in the
structures discussed is a family of networks in which link membership is determined by measures of
proximity between pairs of the entitics stored in the database. This type of network is shown to
have properties which guarantee that the search for a matching feature vector is monotonic. That is,
the database can be searched with no backtracking, if there is a feature vector in the database which
matches the fcature vector of the external entity which is to be identificd. The construction of the
database is discussed, and the search procedure is prescated. A section on the support provided by
the database for description of the decision-making processes and the search path is also included.

1. Introduction ‘
Scveral structures have been proposed which have properties desirable for use in a ics vision database system.
Some of these structures are examined in this paper, incduding a cew family of networks in which link membership is
determined by measures of proximity between pairs of entities represented by nodes it}/ixc database and the triangle ine-
quality. /
Suitable domains for the database structures coasidercd here are those fo /\:vbich the entities to be stored are
describable by a few feature vectors, e.g. color, or shape using Fourier descriptors. We consider the following 1o be
desirable propertics for such a database: - /

4

1. ‘The database system should support efficient mr‘dx su that the feature vector which
provides the best match to some external entity:-can be found quickly;

2. ‘The structure should support classification, $0 that extemal entities can be named and
higher levels of abstraction are supported;”

3. The structure should support a modest icvel of self-description, so that entities aloog
a scarch path provide information apdul the template-matching and classification
decisions being made;

4. The neighbors of an entity should reflect consistency with respect to class, so that
entities within a given mode of a class should be stored in a manner that reflects
the assoqations and enhance$ retrieval;
/
s .. . -
5. Learning, considered to Pe the addition of entities to the database system, should be
done in such a way that the previous properties are preserved.

While this list is too demanding to be well satisfied by any structure known to the authors, it is informative w
explore the limitations of the various structures. The paradigm of preprocessing the data (entitics to be represented in
the database) so that search is facilitated is an important concept, sciected by Dobkin and Lipton [ 1], Bentley and Fried-
man [2}, and Bentley and Maurer [3]. 'Dobkin and Lipton 1] extended binary search to multidimensional search prob-
lemns, and could efficiently respond to queries which included the nearest-neighbor problem. Bentley and his colleagues
spedatized in range searching querics, in which it is desired to find all entries in the database in which each compooent
of the feature ve@ors is within some given range. .

‘The k-d trees and range trees discussed by Bentley and Fricdman |2} are interesting structures, designed specifi-
cally for range queries. Range queries are, of course, extremely useful for a wide vanety of applications, and can be
used as a sort of de facto classification scheme. Other papers presenting results of studics using k-d trees or range trees
are Bentley and Maurer {3] and Chang and Fu [4]. These methods suffer the limitations imposed by any hicrarchical
scheme in terms of descriptive power and classification strategies, since abstractions are accessanly limited to those
representable by hicrarchies. Category information is, in tact, not a strong point of these methods, since only hierarchi-
cal acighbors of matching entities are readily availuble.
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Kalvin, et al. [5], bave developed a technique for pattern recognition based on geometric descriptions of the
boundaries of objects. This technique is designed specifically for identification of overlapping and partially occluded
objects. Attributes used for matching are derived from geometric features of scgments of the boundaries of a set of
objects. The scarch procedure is based on geometric hashing of objects in S-space, where the coordinates are attribute
values obtained during preprocessing of the data. A set of candidate matches (models) is selected on the basis of fre-
quency of inclusion in the hypercubes of S-space in which the unknown’s attributes place it. A match rate is computed
for each candidate match (model) based on the ratio of the number of match points for the medel and the number of
possible match poiats for a particulat unknown. The database organization provides for efficient search for the specific
application for which it was inteaded; however, no categorical information is provided and varying levels of abstraction
are not supported.

Pathfinder networks share some attributes and objectives with memory-based reasoning, as discussed in Stanfill
and Waltz [6]. Both paradigms make use of feature values to compute distance or dissimilarity functions, search
memory for best match(es), and classify entities; and both paradigms share the philosophy of classifying entities by direct
reference to memory. Pathfinder networks, however, are organized algorithmically so that associations are explicit,
which results in categories being evident in the fink structure. The search procedure described in Section 11 of this
paper guarantees that search is monotonic (i.c., there is no backtracking) if there is a match in the database, so that
search ‘is not exhaustive, as it is in the scheme used for the Connection Machine described in Stanfill and Waltz {6).
Furthermore, the memory-based reasoning paradigm does not support descriptions of the search path and the dedisions
made which contribute to classification.

"Description” is used here to mean that the salient feature values of catitics along the search puth, the scarch path
itself, the reasons for selecting the search path, and the neighborhood of the goal node, are available for a summary of
the entire process. Section IV of this paper is devoted to a discussion of descriptive processes supported by the databuse
developed here.

The organization of the entities in the database is based on a nerwork model of semantic memory in humans. “This
model is called Pathfinder, and the properties of Pathfinder networks (PFNETs), previously called link-weighted net-
works (LWNs), are described in Dearholt, Schvaneveldt, and Durso {7] and ia Schvaneveldt, Dearholt, and Durso [81.
Earlier work on databases intended for vision systems is described in Dearholt, Gonzales, Ellington, and Phillips {9],
and in Dearholt, Gonzales, and Kirpckar [10]. These database schemas also used Pathfinder networks, Maotivations for
the database described in the latter paper and extended in this paper include (1) increased efficiency in the scarch pro-
cess by eliminating backtracking; (2) the efficicnt determination whether or not a given entity is represented in the data-
base; (3) organization of the database so that similar entities are clustered together; (4) provision for category-tevel
information by means of the clustering inhcrent in Pathfinder networks; and (5) support of description of the search and
classification processes.

The cfficency in the scarch process is accomplished at the time the network is gencrated by establishing links

_ which provide a path between any two nodes so that the relative distance between nodes, as the path is traversed, is
monotonically decreasing. Then, if a feature vector representing an external cntity is presented to the dutabase as o
query, the corresponding node can be found rapidly from any node in the database. Heunistics to improve the initial
node of the search can further improve the scarch efficiency. The determination that a given entity is oot in the dat-
base follows from the procedure to be described in Section I The clustering of similar entitics and the resultant
category-level information is u feature of the PENETS to be described in Section 11, These features provide a basis for
the support of the description processes 1o be discussed in Section [V,

TI. The Generation of a Pathfinder Network Database

Because PFNETs provide for clustering of similar entities, they seem to be a good paradigm for a database organi-
zation; indeed, their original purpose in madeling the semantic memory of humans provides for a database of concepts.
Thus it seemed natural to extend PFNETs to feature-based applications in which cach entity is descnibed by a feature
vector. Vision systems used for pattern recognition and image analysis are well served by such databases, and the pro-
pertics of PFNETs support search, classification, and description, as mentioned previously. Qur first effort in this direc-
tion was the database for insect identification (Dearholt, et al., [9]), in which PFNETs were used to organize the data-
base. PFNET{x, n-1) was used because it is the PENET with fewest links, but there was no very effective scarch pro-
cedure assocated with this PFNET organization. Qur second effort (Dearholt, et al., {10]) justificd and described the
construction ot the PFNET's which guarantee monotomie search.  The purposes of this paper are to hist the desiranle pro-
perties of a vision database for robotics, and to desenbe the results of our work wath Pathtinder networks selevant to
these properties. [t should thus be regarded as a progress report of our project, wntten for the purposes of the
workshop.
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The database schema we will present relies on the Pathfinder network model as a means of organizing the eatities
in the database. Development of this model (previously called link-weighted networks) has been ongoing for the past
six years. Pathfinder yields network structures (PFNETS) for a set of entities, given estimates or measures of the pair-
wise distances between the entities. The original purpose of Pathfindér models was to model buman semantic memory,
50 that the estimates of distances were typically estimates of similarity. For the database schema discussed here, how-
ever, the entities are each represented by a feature vector, and distances beiween pairs of entities are prescnted to the
system as a weight matrix. [If the weight matrix is symmetric, then the PFNETs dzrived from it are undirected, whereas
an asymmetric weight matrix yields directed PFNETS.

A maximally connected network contains a link between every pair of nodes, so that each weight in the weight
matrix is represented by a link. Such a network contains all the original information in the data, but it provides very lit-
tle information about the structure underlying the data. Pathfinder includes only the links necessary to prescrve geo-
detic paths, thus facilitating analysis and interpretation. Two parameters are required for the complete definition of a
PFNET for a particular weight matrix. These are the r-metric and the g-parameter. The r-metric is the value of the
Minkowski parameter which is used to compute the distance between nodes in the network which are not directly
linked. That is, the weights along the path used to compute distance are individually tuken to the r power, these values
are summed, and the rth root of the resulting sum is the distance. In general, .

dNN)=1E wyr )
A=t

where the w, arc the weights along the path berween N, and N;. The r-metric parameter may take on values from'1 to
=, The g-parameter determines the maximum number of links in paths considered to connect two nodes. For example,
for ¢ = 2, paths having more than two links are not considered in the preservation of minimum-distance (geodetic)
paths in the PENET.

PFNETSs possess properties of iuclusion which vary as values of the r-metric and ¢-paramcter chaage (Dearholt, et
al., [7]). Brietly, for a particular weight matrix, PFNE12 is a spanning subgraph of PFNET'! if and only if the r-metric
used for PFNET]1 is less than or equal to the r-metric used for PENET2, provided that the q-parameter is held constant.
In addition, for a particular weight matrix, PFNET2 is a spanning subgraph of PFNET! if and only if the value of the
g-parameter used for PFNET] is less than or equal to the value of the g-parameter used for PFNE12, provided that the
r-metric is held constant. The PFNET generated with r = o and ¢ = the-number-of-nodes-less-onc always has the
minimum number of links and is the union of all minimum cost spanning trees of an undirected PFNET.

As a PENET is constructed, precedeace is given to small weight values, because they represent the strongest asso-
ciations. During cach stage of development of an undirected PFNET, the complete set of nodes is partitioned into con-
nected subgraphs, called node sublists. Whea a link is added which joias nodes in different sublists, the two sublists arc
merged to form a single node sublist. Links in an undirected PFNET are labeled according to the basis for their inclu-
sion in the PFNET. The four types of link labels are PRIMARY, SECONDARY_A, SECONDARY_B, and TER'T1-
ARY. A PRIMARY link provides the only path between a node sublist containing a single node and some other node
sublist. A SECONDARY link joins two sublists which are not connected, and in which there are cither alternate paths
to terminator nodes, or the node size of both node sublists exceeds one. SECONDARY_A links are in all minimum
cost spanning trees. SECONDARY_B links arc in only some minimum cost spanning trees, as they provide alternate
paths of the same length between two nodes. A TERTIARY link joios nodes within a single node sublist. TERT1-
ARY links are not in any minimum cost spanning tree. ‘The link-labeling rule yields important stractural information,
and the potential use of link labels in the descriptive processes will be discussed in Section V.

Investigation of transformations on the values of the weight matrix has yielded two results of importance relatiog
to the structure of PENETs. A multiplicative transformation applied to the clements of a weight matrix prescrves link
structure in the PFNET for any values of r or g. A monotonic transformation applied to data in a weight matnx
prescrves the structure of the PENET only for r = . :

‘I'he construction of the datatase for vision applications presumes a set of entitics and some procedure to derive
feature vectors to represent these entities. Typically, tie entities to be represented by nodes in the database are exam-
ined 1o obtain salient features. Each class of feature values is presented as a vector; €.g., a color descriptor could
include intensity values obtained from red, green, and blue filtered images. Similarly, shape descriptors might consist of

" a veator of Fourier coefficients. Difference measures for this paper are obtained using the £.1 norm (the computation is
the same as the Minkowski distance for = 1) for cach pair of entities, to obtain the weight matrix for input to Path-
finder.

‘The Pathfinder model preserves all geodetic {minimum cost) paths having no more links than the value of the ¢
parameter, and leads to clustering based upon similarity of nodes. Pairs of nodes which are not directly linked in a
PFNET arce likely to be in different categories or subcatcgories. PFNEIS provide a means ot scaling data similar in
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some respects to dustering methods (e.g., Shepard and Arabie, [11]) and to multidimcnsional scaling (Kruskal, 12D,
but the links in PFNETSs provide information pot directly available in clustering or in multidimensional scaling. Another
network scaling scheme is NETSCAL (Hutchinson, [13]), but unfortunately Hutchinson did not consider triangle ine-
qualities of dimension greater than two. T ] :

The domain assumed for the database consists of those problems in which each entity in the database is
represcated by a vector having d feature values, and corresponding features have their feature values in corresponding
locations in the feature vectors. In addition, we assume that the features of the entities are such that taking the differ-
ence of carresponding feature values (as a part of applying the L1 porm) is appropriate. To begin the process of gen-
crating a PFNET, it is necessary to compute a scalar weight matrix W For the purposes of this paper, we will compute
the scalar weight values of W using the L1 norm. For the Lm norm, :

d
w,=l X Iwow, | =]V
-1

The L1 nomm sums the magnitudes of the differences between corresponding components for the feature vectors
being comipared. If the L2 norm were used, it would be the Euclidean metric. For a discussion of distance measures
suitable for data such as this, see Tversky and Krantz {14]. This atticle also justifies the Lm norms (the Minkowski
metrics) as being the only metrics which possess both intradimensional subtractivity and interdimensional additivity, a
feature that seems as important for vision databases as for cognitive modeling.

Although the r-metric parameter used with PFNETS can vary from 1 through =, for the purposes of the databases
described in this paper, = will be used. The consequence of this is that the distance between nodes not directly bnked is
the value of the largest weight along the path connecting the nodes. This is sometimes called the dominant wetric. The
databases in this paper use ¢ = 2. 'The notation used for a PENET in which feature vectors are used to compute W' is
PENET(Lm, r, g), with the parameters in parentheses corresponding to the parameters discussed above.

A primary purposc of the databases coostructed as PFNETs is to support effective scarch, so that natation for
search paths is helpful. Search paths begin at some initial node, follow links cstablished in the construction of the
PENET, and end at a node. Since there is at most one link between any two nodes, we. will denote a search path from
nodc N, to node N, (passing through N,) as

PNAN, ... Ny

N, is said to be a predecessor of N, because it precedes N, in the search path. One way of viewing the network s to
think of the entitics N, as points in d-dimensional space, establishing links according to the link membership rule of
PFNETs, and traversing these links according to the search procedure 1o be described.

Another concept of importance is the june of two nodes. The lune is discussed in Toussaint |15} in his definition
and discussion of relative neighborhood graphs (RNGs). Lunes are also discussed in Lee [16] and in Katajainen and
Nevalainen [17]. The lune of two nodes (points) N; and N, will be denoted by lune(N,. N,), und is detined as the sct of
points in which each point has a distance (we'll usc the L] norm, rather than the L2 norm as in the ongina work on’
RNGs) from both N, and N; less than the distance berween N; and N,. In the weight matrix W, these internode dis-
tances using the L1 norm are already computed. Using L1, lune(¥,. ) is a rectilinear figure of dimension 4. If L2
were used, lune(N,, N, would be the set of points in the intersection of two hyperspheres of dimension 4.

A notable difference berween RNGs and PFNETs is in the assumptions usually made about the input spaces. For
the' RNG. two-dimensional space is normally assumed for the input data, but no such constraint is necessary for
PFNETs. If the input spaces are two-dimensional, however, then the link membership of an RNG using L2 is such that
the RNG is a spanning subgraph of PENET(L2, r=2, ¢=2). In the RNG, wo nodes ¥, and N, are linked directly if
and only if there is no other node in the luge(¥,, N,). Euclidean distance is used in the 2-space in which the entities are
customarily represeated as vectors for the RNG, so that the lunes are intersections of crcles.

Although PFNET(L2, r=2, ¢=2) is satisfactory for a databasc organizatiog, in terms of search for a matching
entity in the database, the use of PFNET(L1, =. 2) is preferable because the latter requires less computation in both the
construction of the nerwork and in search. Using L1, and assuming wo dimeasional input space, the link membership
for an RNG is the same as the ligk membership of PENET(L1, r==, g=2). For cither. the link membership rule is

{, isin PFNET(L1, =, 2) if and only if

w, = min | max [wywy, ||

over all two-link paths between N, and N,
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This definition can be viewed as providing a link mcmbexslup rule for one of a family of PFNE'I‘ s, Or as an extension of
the RNG to a new application making use of the L1 metric.

The reason this PFNET is efficient in searching for a maiching entity in the database is that the link placcmem s
such that backtracking is ncver needed, provided that there is a matching node in the database.

1. Moaootonic Search of a Pathfinder Database

Efficient, monotonic search, in which there is always a link to direct the search path(s) toward a node matching
the external entity to be identified, is onc of the attributes of a database organized as a Pathfinder network. Justifica-
tion of monotonic search of a PENET(L1, =, 2) database follows. Coasider that a set of entitics N, has been established
with their corresponding feature vectors, and that the scalar weight matrix W has been computed using the L1 norm.
Suppose that the PFNET(L1, «, 2) has been coastructed. and that £, is an external entity represented by a feature vec-
tor compatible with the feature vectors of the N, in the database; it is desired to find the N, which provides the closest
match to E, within the database. Further suppose that the initial ‘node (the node where search is initiated) is chosen 1o
be N,, and that node N, in the database is a match for E,.

That is, we assume for this discussion that the feature vectors for £, and N, are identical. 'The goal is to find a
path between N; and N,, applying the match criterion at cach node along the search path, unti! it is determined that £,
does indeed match Ny. An appealing argument can be made through the use of the lunes defined by the nodes along
the search path. Consider lune(N;, N,) --if there is no other node in this lune, then N; and N, arc linked directly, and a
one-link search path connects the initia} node with the goal node. Altematively, if there is another node in lune(y, ,
N,), then N, and N, are not directly linked. But each node in the lune(N;, Ny) is doser to Ny than N, is to N,. so that in
progressing to any node in the interior of the lune, we diminish the distance to N,. ‘The node N, closest o N, will be
linked to N, and the search path can proceed to N;. The search path can, however, proceed to any / node in lunc(‘V,. Ng)
which is lmked to N;, and it is usually advamageous to go to the node which diminishes the distance to the goal node the
most. Suppose the search progresses to node N,. Here, the process is repeated with tune(N;, N,), and cvery node in this
lune is closer to N, than is N,, 50 again the distance to the goal diminishes. [n this f.xshnon the goal node is reached
using only distance mCdauerc.mb between £, and the nodes which are candidate successors for nodes on the scarch
path, since we assume that £, and N, have the same feature vectors. ‘That i is, at node N, the difference between E, and
nodes linked to N, is taken, md the difference which is smallest determines the next mxk in the scarch path. lbus the
link structure gu.:mnu.ca that no backtracking is ever necessary if the entity £, is in the database. If the distance from
some node in the search path to £, does not reach zero and cannot be diminished, then this indicates that there is 0o,
node which exactly matches £, in the database.

A matching criterion based upon network properties is under du.vdupmm( although some .Jspn.cts of a match cri-
tenion are necessanly dependent upon the problem domain. Throughout this paper, we presume that the matching cri-
terion requires the goal node and E, to match much more closely than £, matches any other node in the database.
Refinement of th theory of matching criteria is an arca we are continuing to investigate.

There are four aspects of the search process for a database as desceribed woove, although the fourth is not always
needed. These are:

(1) The setection of an initial node from which to begin the search,
usually by means of some heuristic.

{2) The selection of a path from the initial node to the best matching
node in the database.

(3) 'The application of the match criterion to cach node along the path
through the database, to determine whether any node on the path is
a satisfactory match for the feature vector representing the entity
to be identified.

(4) The determination of nearest ncighbors of the node most nearly matching
the external entirv.  Pathfinder networks support this search for
nearest neighbors, because the tink structure preserves geodetic
(minimum) distances throughout the network.
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The sclection of an initial node can be accomplished by means of an index oa some of the most salicat featurcs, s0
that, mostofthenme,thcininalnodekmtheumedmutheemitylobe:dennﬁed Sembefﬁcwncynenhmced
of course, if the search is begun in the proper category. But the property of PFNET(L1,,2) of guaranteeing that from
each node, the distance (oeveryo(bernodcmmedaahaseunbedmmhedbytmvemngsanehnkasumthanhc
chowconhelmualnodcdmndaﬂectlhccmvergencewthegmlmdclfthclancrumthcdatabase This is impor-
tant because it is not alway possible to begin the search at a node in the same category as the goal node.

The search procedure consists of the following steps, to be done at each node in the search path, from the initial
node to the node at which the decision regarding a match can be made: _

(1) The match criterion is applied to the present node (starting with
the initial node) to determine whether or not the present node is
a satisfactory match with the eatity E,. If the match is ’
satisfactory, then halt.

(2) The distance d(N,,E,) between each node N, ad]acent (linked)
to the present nodc and the entity E, is computcd using the L1
metric.

(3) The node N, which decreases the distance d(N,,E,) the most is
selected as the next node in the search path. If it is not possible
to decrease the distance to the goal node (represented by E, )
then there is no matching node in the database. Otherwise,
return 1o step one.

As an example, consider the set of nodes

Ny=(21)  Ns=(9,4)
Np=(4 1) Ne=(9,6)
Ny=(54 N,=(1.8)
Ny=(3.5)  Nyg=(10,8)

The weight matrix for this set of feature vectors, computed using the L1 norm, is

— —
0 2 6 5 10 12 1215

0 4 5 8 10 10 13

0 3 4 6 6 9

W= 0 7 7 7 10
0 2 6 S

0 4 3

0 3

0

The PFNET(L1,2,2) is constructed using W, and is shown in Figure 1.

Ny Ng

Ny ' Ns

Ny N,

Figure 1
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If the search is started at Ny = (2, 1), with E, = (10, 8) = Ny, then the search path is PV, Ny, N3, Ny, Np), and
the search procedure halts at Ny with a match. Links are followed at each step, and the distance to the goal sode
decreases monotonically at each node. K .

The match criterion necessarily has some aspects which are domain dependent, but could be as simple as requiring
that the distance between the goal node (providing the presumed best match) and E, be less than some threshold value
computed from the smallest distances between nodes in the database. Refinements could include the addition of ao cle-
ment of context in the sense that each category may have somewhat differing variability associated with satisfac- tory
matching. The scarch process outlined above does not guarantee that the path with fewest links will be found, but it
does guarantce that a path to a matching node will be found in which the distance decreases mouotonically along the
search path. If there is no node in the database which is an exact match to E,, this is determined when the distance
from a node N; (on the search path) to E, is larger than the distance from the preceding node in the search path o E,.
In this case, using the L1 norm, then it is not possible to get a better maich to £, than the predecsssor of Nj; if that is
not a satisfactory match, then E, is considered not to be in the database. Formal proof of this is forthcoming in
Dearholt [18]. ,

IV. Description of Decisions and Neighborhoods

For an intelligent system, it is desirable to have support for the description of decisions made during the search
process. This information can be very uscful for communicating with the system in an attempt to understand not oaly
the classification decision for a particular entity, but tae properties of the neighborhood surrounding the entity in the
network. The latter information can, of course, be used in some of the more sophisticated classification algorithms.
Because of the dustering properties of PFNETs, and the directacss of the scarch process associated with PFNET(L1, «,
2), there is substantial information available regarding the classification results. The categories of nodes aloag the
search path, and values of some of their most salient features, are the principal pieces of information used for our
descriptive processes. We will focus mainly on four issues:

(1) The node where search is initiated,
(2) The search mih.

(3) Link labels,

(4) The classification deasion.

The selection of the initial node for the search procedure is a very significant decision. Although the PFNET(L1,
@, 2) guarantees convergence between any pair of nodes, the scarch time can be lessencd substantially in a large data-
base by judicious selection of the initial node. Beginning at a node which is in the same cluster as the goal node is a
desirable objective; but the solution of this problem would imply that the classification problem for the entities in the
domain is also solved. For many domains, the setection of a few key features which often lead to correct classification
can be used to provide a sort of indexing into the network, so that the initial node could be the node having highest
degree in the category indicated by the feature values in the set of key features. These key feature values, and the
heuristic selection of an initial node based on them, are thus a part of the descriptive process at the beginning of the
scarch.

As the search begins trom the initial node (sclected by some heuristic), at each node N, in the search path some
decision is made based upon the distance between the external entity and the nodes linked to N;. The most suitable
strategy, as discussed in Section II1, is to select the node which most decr 1ses the distance to the goal node, aithough
there is no guarantee that the goal node will be reached in the fewest steps by using this strategy. The values of the
feature vectors of the nodes which are candidate successors to N; are avaiiable, and for the N; which is the successor
node to N,, the feature value(s) which are most responsible for diminishing the distance to the goal are available for use
in description. Together, these feature values are an indication of progress made toward the goal entity, since back-
tracking is never necessary. Furthermore, if there are multiple search paths (previously defined as the paths leading to
the goal node). properties of all of the search paths can provide important information to the descriptive process.

The link labels on the links traversed also have some significance, as ponted out in Section 1I. PRIMARY and
SECONDARY_B links arc typically indicative that the search is progressing within a category, while the traversd of a
TERTIARY link in a PENET(L1, =, 2) scems to indicate that the scarch path has progressed to a new category or sub-
category. ‘The traversal of a SECONDARY_A link also usually indicates entry into a new category.  Proofs of these
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observations are difficult and oot yet available, partly because the definition of “category” or "subcategory” is difficult.
We are coatinuing to investigate the information provided by link labels, however, and that information is available for
description also. . ,

The last-part of the search involves classification of the external entity, if that is possible. The choices of nodes
available at the last step of the search provide information regarding the class and the centrality of the entity, so that
some level of confidence in the dedision of category could be assigned. That is, if the match with the goal node were
bordertine, and the node were near another category, then the confidence in the classification should not be very great.
But if the goal node matched quite well and were also in the “center” of a category, then the confidence of the dassifica-
tion should be high. The Pathfinder paradigm supports a local search for nearest ncighbors, so that this information can
be used in either the classification decision or in the description of the neighborhood surrounding the goal node. The
search for neighboring entities can be viewed as search by spreading activation, which would leave the goal node and
travel to the ncighboring nodes, so that their feature values and classification is available. Thus the centrality of the
goal node, and its relationships to other nodes and categorics, can be readily determined.

V. Summary and Conclusions

“I'he construction of a database for vision applications using Pathfinder networks (PFNETs) was described, and it
was shown that the search procedure associated with this database organization is monotonic (a distance measure
steadily decreases at each node throughout the search path), provided there is a node in the database which matches the
external entity. Relationships with the relative neighborhood graph (RNG) were discussed, and the scarch procedure
was described. The database organization and search procedure provide a basis for descriptive processes of the decisions
made along the entire search path, from the initial node to the goal node (or to the point where it is decided that there
is no match in the database). Description based on these feature values and changes in feature values along the search
path(s) and in the neighborhood of the goat node is expected to be uscful in enhancing communication between the
vision or robotics systcm and humans working with the system. -

Reseasch is coatinuing on some of the open questions encountercd thus far. ‘The match criterion used to deter-
mine whether the external entity matches some node in the search path “satisfactorily” is an important problem, and it
has some domain-dependent propertics and some characteristics which can be determined from a graph-theoretic per-
spective. ‘The precise rale of the PRIMARY, SECONDARY, and TERTIARY links in PFNET(L!, =, 2) is also being
studicd, particularly how these link labels relate to category structure of the actwork. ‘The descriptive processes are
under investigation from the perspective of graph theory, although there secms to be a domain-dependent aspect also.
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